Lemma 3.7. Let T be a Hausdorff topological space and C_1 , C_2 disjoint compact subsets of T. Then, there are disjoint open subsets U_1 , U_2 of T such that $C_1 \subseteq U_1$ and $C_2 \subseteq U_2$. In particular, if T is compact, then it is normal.

Proof. We first show a weaker statement: Let C be a compact subset of T and $p \notin C$. Then there exist disjoint open sets U and V such that $p \in U$ and $C \subseteq V$. Since T is Hausdorff, for each point $q \in C$ there exist disjoint open sets U_q and V_q such that $p \in U_q$ and $q \in V_q$. The family of sets $\{V_q\}_{q \in C}$ defines an open covering of C. Since C is compact there is a finite subset $S \subseteq C$ such that the family $\{V_q\}_{q \in S}$ already covers C. Define $U := \bigcap_{q \in S} U_q$ and $V := \bigcup_{q \in S} V_q$. These are open sets with the desired properties.

We proceed to the prove the first statement of the lemma. By the previous demonstration, for each point $p \in C_1$ there are disjoint open sets U_p and V_p such that $p \in U_p$ and $C_2 \subseteq V_p$. The family of sets $\{U_p\}_{p \in C_1}$ defines an open covering of C_1 . Since C_1 is compact there is a finite subset $S \subseteq C_1$ such that the family $\{U_p\}_{p \in S}$ already covers C_1 . Define $U_1 := \bigcup_{p \in S} U_p$ and $U_2 := \bigcap_{p \in S} V_p$.

For the second statement of the lemma observe that if T is compact, then every closed subset is compact.

Lemma 3.8 (Urysohn's Lemma). Let T be a normal topological space and C_1, C_2 disjoint closed subsets of T. Then there exists a continuous function $f: T \to [0,1]$ such that $f(C_1) = 0$ and $f(C_2) = 1$.

Together with the above lemmas the Gelfand-Naimark theorem gives rise to a one-to-one correspondence between compact Hausdorff spaces and unital commutative C^{*}-algebras.

Theorem 3.9. The category of compact Hausdorff spaces is naturally equivalent to the category of unital commutative C^* -algebras.

Proof. Exercise.

Before we proceed we need a few more results about C*-algebras.

Lemma 3.10. Let T_1 be a compact Hausdorff space, T_2 be a Hausdorff space and $f: T_1 \to T_2$ a continuous bijective map. Then, f is a homeomorphism.

Proposition 3.11. Let A be a unital C^{*}-algebra and $a \in A$ normal. Define B to be the unital C^{*}-subalgebra of A generated by a. Then, B is commutative and the Gelfand transform \hat{a} of a defines a homeomorphism onto its image, $\Gamma_B \to \sigma_B(a)$ which we denote by \tilde{a} .

Proof. B consists of possibly infinite linear combinations of elements of the form $(a^*)^m a^n$ where $n, m \in \mathbb{N}_0$ (and $a^0 = (a^*)^0 = e$). In particular, B is commutative. Consider the Gelfand transform $\hat{a} : \Gamma_B \to \mathbb{C}$ of a in B. Suppose $\hat{a}(\phi) = \hat{a}(\psi)$ for $\phi, \psi \in \Gamma_B$. Then, $\phi(a) = \psi(a)$, but also

$$\phi(a^*) = \hat{a^*}(\phi) = \hat{a}(\phi) = \hat{a}(\psi) = \hat{a^*}(\psi) = \psi(a^*),$$

using Theorem 3.6. Thus, ϕ is equal to ψ on monomials $(a^*)^m a^n$ by multiplicativity and hence on all of B by linearity and continuity. This shows that \hat{a} is injective. By Proposition 2.15 the image of \hat{a} is $\sigma_B(a)$. Thus, \hat{a} is a continuous bijective map $\hat{a}: \Gamma_B \to \sigma_B(a)$. With Lemma 3.10 it is even a homeomorphism.

Proposition 3.12. Let A be a unital C^{*}-algebra and $a \in A$. Let B be a unital C^{*}-subalgebra containing e and a. Then, $\sigma_B(a) = \sigma_A(a)$.

Proof. It is clear that $\sigma_A(a) \subseteq \sigma_B(a)$. It remains to show that if $b := \lambda e - a$ for any $\lambda \in \mathbb{C}$ has an inverse in A then this inverse is also contained in B.

Assume first that a (and hence b) is normal. We show that b^{-1} is even contained in the unital C*-subalgebra C of B that is generated by b. Suppose that b^{-1} is not contained in C and hence $0 \in \sigma_C(b)$. Choose $m > ||b^{-1}||$ and define a continuous function $f : \sigma_C(b) \to \mathbb{C}$ such that f(0) = m and $|f(x)x| \leq 1$ for all $x \in \sigma_C(b)$. Using Theorem 3.6 and Proposition 3.11 there is a unique element $c \in C$ such that $\hat{c} = f \circ \tilde{b}$. Observe also that $\hat{b} = \mathrm{id} \circ \tilde{b}$, where $\mathrm{id} : \sigma_C(b) \to \mathbb{C}$ is the map $x \mapsto x$ and hence $\hat{c}\hat{b} = (f \cdot \mathrm{id}) \circ \tilde{b}$. Using Theorem 3.6 we find

$$m \le ||f|| = ||c|| = ||cbb^{-1}|| \le ||cb|| ||b^{-1}|| = ||f \cdot id|| ||b^{-1}|| \le ||b^{-1}||.$$

This contradicts $m > ||b^{-1}||$. So $0 \notin \sigma_C(b)$ and $b^{-1} \in C$ as was to be demonstrated. This proves the proposition for *a* normal.

Consider now the general case. If b is not invertible in B then by Lemma 1.8 at least one of the two elements b^*b or bb^* is not invertible in B. Suppose b^*b is not invertible in B (the other case proceeds analogously). b^*b is self-adjoint and in particular normal so the version of the proposition already proven applies and $\sigma_A(b^*b) = \sigma_B(b^*b)$. In particular, b^*b is not invertible in A and hence b cannot be invertible in A. This completes the proof.

4 The GNS construction

We now move towards a characterization of noncommutative C^{*}-algebras. We are going to show that any unital C^{*}-algebra is isomorphic to C^{*}-subalgebra of the bounded operators on some Hilbert space.

Definition 4.1. Let A be a unital C*-algebra. A self-adjoint element $a \in A$ is called *positive* iff $\sigma_A(a) \subset [0, \infty)$.

Exercise 1. Let T be a compact Hausdorff space and consider the C^{*}-algebra $C(T, \mathbb{C})$. Show that the self-adjoint elements are precisely the real valued functions and the positive elements are the functions with non-negative values.

Proposition 4.2. Let A be a unital C^* -algebra and $a, b \in A$ positive. Then, a + b is positive.

Proof. Suppose $\lambda \in \sigma_A(a+b)$. Since a and b are self-adjoint so is a+b. In particular, $\sigma_A(a+b) \subset \mathbb{R}$ and λ is real. Set $\alpha := ||a||$ and $\beta := ||b||$. Then, $(\alpha+\beta)-\lambda \in \sigma_A((\alpha+\beta)e-(a+b))$ and thus $|(\alpha+\beta)-\lambda| \leq r_A((\alpha+\beta)e-(a+b))$ by Theorem 1.14. But the element $(\alpha+\beta)e-(a+b)$ is normal (and even self-adjoint), so Proposition 3.3 applies and we have $r_A((\alpha+\beta)e-(a+b)) = ||(\alpha+\beta)e-(a+b)|| \leq ||\alpha e-a|| + ||\beta e-b||$. Again using Proposition 3.3 we find $||\alpha e-a|| = r_A(\alpha e-a)$ and $||\beta e-b|| = r_A(\beta e-b)$. But $\sigma_A(a) \subseteq [0, \alpha]$ by positivity and Proposition 1.7. Thus, $\sigma_A(\alpha e-a) \subseteq [0, \alpha]$. Hence, by Theorem 1.14, $r_A(\alpha e-a) \leq \alpha$. In the same way we find $r_A(\beta e-b) \leq \beta$. We have thus demonstrated the inequality $|(\alpha+\beta)-\lambda| \leq \alpha+\beta$. This implies $\lambda \geq 0$, completing the proof.

Proposition 4.3. Let A be a unital C^{*}-algebra and $a \in A$ self-adjoint. Then, there exist positive elements $a_+, a_- \in A$ such that $a = a_+ - a_-$ and $a_+a_- = a_-a_+ = 0$.

Proof. **Exercise.** Hint: Consider the unital C*-subalgebra generated by a.

Proposition 4.4. Let A be a unital C^{*}-algebra and $a \in A$. Then, a is positive iff there exists $b \in A$ such that $a = b^*b$.

Proof. <u>Exercise</u>.

A similar role to that played by the characters in the theory of commutative C^* -algebras is now played by *states*.

Definition 4.5. Let A be a unital C*-algebra. A linear functional $\omega : A \to \mathbb{C}$ is called a *state on* A iff $\omega(a) \geq 0$ for all positive elements $a \in A$. A state is called *normalized* iff $||\omega|| = 1$.

Proposition 4.6. Let A be a unital C^{*}-algebra and ω a state on A. Then $\omega(a^*) = \overline{\omega(a)}$ for all a in A. In particular, $\omega(a) \in \mathbb{R}$ if a is self-adjoint.

Proof. <u>Exercise</u>.

Proposition 4.7. Let A be a unital C*-algebra and ω a state on A. Consider the map $[\cdot, \cdot]_{\omega} : A \times A \to \mathbb{C}$ given by $[a, b]_{\omega} = \omega(b^*a)$. It has the following properties:

- 1. $[\cdot, \cdot]_{\omega}$ is a sesquilinear form on A.
- 2. $[a,b]_{\omega} = \overline{[b,a]_{\omega}}$ for all $a,b \in A$.
- 3. $[a, a]_{\omega} \geq 0$ for all $a \in A$.

Proof. Exercise.

This shows that we almost have a scalar product, only the definiteness condition is missing. Nevertheless we have the Cauchy-Schwarz inequality.

Proposition 4.8. Let A be a unital C^{*}-algebra and ω a state on A. The following is true:

1.
$$|[a,b]_{\omega}|^2 \leq [a,a]_{\omega}[b,b]_{\omega}$$
 for all $a,b \in A$.

- 2. Let $a \in A$. Then, $[a, a]_{\omega} = 0$ iff $[a, b]_{\omega} = 0$ for all $b \in A$.
- 3. $[ab, ab]_{\omega} \le ||a||^2 [b, b]_{\omega}$ for all $a, b \in A$.

Proof. Exercise.

Proposition 4.9. Let A be a unital C^{*}-algebra and ω a state on A. Define $I_{\omega} := \{a \in A : [a, a]_{\omega} = 0\} \subseteq A$. Then, I_{ω} is a left ideal of the algebra A. In particular, the quotient vector space A/I_{ω} is a pre-Hilbert space (scalar product space) with the induced sesquinear form.

Proof. Exercise.

Definition 4.10. Let A be a unital C*-algebra and ω a state on A. We call the completion of the pre-Hilbert space A/I_{ω} the *Hilbert space associated with the state* ω and denote it by H_{ω} . We denote its scalar product by $\langle \cdot, \cdot \rangle_{\omega} : H_{\omega} \times H_{\omega} \to \mathbb{C}$.