
FA NOTES � 28/11/2008 1Lemma 3.7. Let T be a Hausdor� topologi
al spa
e and C1, C2 disjoint
ompa
t subsets of T . Then, there are disjoint open subsets U1, U2 of T su
hthat C1 ⊆ U1 and C2 ⊆ U2. In parti
ular, if T is 
ompa
t, then it is normal.Proof. We �rst show a weaker statement: Let C be a 
ompa
t subset of Tand p /∈ C. Then there exist disjoint open sets U and V su
h that p ∈ U and
C ⊆ V . Sin
e T is Hausdor�, for ea
h point q ∈ C there exist disjoint opensets Uq and Vq su
h that p ∈ Uq and q ∈ Vq. The family of sets {Vq}q∈Cde�nes an open 
overing of C. Sin
e C is 
ompa
t there is a �nite subset
S ⊆ C su
h that the family {Vq}q∈S already 
overs C. De�ne U :=

⋂
q∈S Uqand V :=

⋃
q∈S Vq. These are open sets with the desired properties.We pro
eed to the prove the �rst statement of the lemma. By the pre-vious demonstration, for ea
h point p ∈ C1 there are disjoint open sets Upand Vp su
h that p ∈ Up and C2 ⊆ Vp. The family of sets {Up}p∈C1

de�nesan open 
overing of C1. Sin
e C1 is 
ompa
t there is a �nite subset S ⊆ C1su
h that the family {Up}p∈S already 
overs C1. De�ne U1 :=
⋃

p∈S Up and
U2 :=

⋂
p∈S Vp.For the se
ond statement of the lemma observe that if T is 
ompa
t, thenevery 
losed subset is 
ompa
t.Lemma 3.8 (Urysohn's Lemma). Let T be a normal topologi
al spa
e and

C1, C2 disjoint 
losed subsets of T . Then there exists a 
ontinuous fun
tion
f : T → [0, 1] su
h that f(C1) = 0 and f(C2) = 1.Together with the above lemmas the Gelfand-Naimark theorem gives riseto a one-to-one 
orresponden
e between 
ompa
t Hausdor� spa
es and unital
ommutative C∗-algebras.Theorem 3.9. The 
ategory of 
ompa
t Hausdor� spa
es is naturally equiv-alent to the 
ategory of unital 
ommutative C∗-algebras.Proof. Exer
ise.Before we pro
eed we need a few more results about C∗-algebras.Lemma 3.10. Let T1 be a 
ompa
t Hausdor� spa
e, T2 be a Hausdor� spa
eand f : T1 → T2 a 
ontinuous bije
tive map. Then, f is a homeomorphism.Proposition 3.11. Let A be a unital C∗-algebra and a ∈ A normal. De�ne
B to be the unital C∗-subalgebra of A generated by a. Then, B is 
ommutativeand the Gelfand transform â of a de�nes a homeomorphism onto its image,
ΓB → σB(a) whi
h we denote by ã.Proof. B 
onsists of possibly in�nite linear 
ombinations of elements of theform (a∗)man where n,m ∈ N0 (and a0 = (a∗)0 = e). In parti
ular, Bis 
ommutative. Consider the Gelfand transform â : ΓB → C of a in B.Suppose â(φ) = â(ψ) for φ,ψ ∈ ΓB. Then, φ(a) = ψ(a), but also

φ(a∗) = â∗(φ) = â(φ) = â(ψ) = â∗(ψ) = ψ(a∗),



2 FA NOTES � 28/11/2008using Theorem 3.6. Thus, φ is equal to ψ on monomials (a∗)man by mul-tipli
ativity and hen
e on all of B by linearity and 
ontinuity. This showsthat â is inje
tive. By Proposition 2.15 the image of â is σB(a). Thus, â isa 
ontinuous bije
tive map â : ΓB → σB(a). With Lemma 3.10 it is even ahomeomorphism.Proposition 3.12. Let A be a unital C∗-algebra and a ∈ A. Let B be auntial C∗-subalgebra 
ontaining e and a. Then, σB(a) = σA(a).Proof. It is 
lear that σA(a) ⊆ σB(a). It remains to show that if b := λe− afor any λ ∈ C has an inverse in A then this inverse is also 
ontained in B.Assume �rst that a (and hen
e b) is normal. We show that b−1 is even
ontained in the unital C∗-subalgebra C of B that is generated by b. Supposethat b−1 is not 
ontained in C and hen
e 0 ∈ σC(b). Choose m > ‖b−1‖and de�ne a 
ontinuous fun
tion f : σC(b) → C su
h that f(0) = m and
|f(x)x| ≤ 1 for all x ∈ σC(b). Using Theorem 3.6 and Proposition 3.11 thereis a unique element c ∈ C su
h that ĉ = f ◦ b̃. Observe also that b̂ = id ◦ b̃,where id : σC(b) → C is the map x 7→ x and hen
e ĉb̂ = (f · id) ◦ b̃. UsingTheorem 3.6 we �nd

m ≤ ‖f‖ = ‖c‖ = ‖cbb−1‖ ≤ ‖cb‖‖b−1‖ = ‖f · id‖‖b−1‖ ≤ ‖b−1‖.This 
ontradi
ts m > ‖b−1‖. So 0 /∈ σC(b) and b−1 ∈ C as was to bedemonstrated. This proves the proposition for a normal.Consider now the general 
ase. If b is not invertible in B then byLemma 1.8 at least one of the two elements b∗b or bb∗ is not invertible in
B. Suppose b∗b is not invertible in B (the other 
ase pro
eeds analogously).
b∗b is self-adjoint and in parti
ular normal so the version of the propositionalready proven applies and σA(b∗b) = σB(b∗b). In parti
ular, b∗b is not in-vertible in A and hen
e b 
annot be invertible in A. This 
ompletes theproof.4 The GNS 
onstru
tionWe now move towards a 
hara
terization of non
ommutative C∗-algebras.We are going to show that any unital C∗-algebra is isomorphi
 to C∗-subalgebraof the bounded operators on some Hilbert spa
e.De�nition 4.1. Let A be a unital C∗-algebra. A self-adjoint element a ∈ Ais 
alled positive i� σA(a) ⊂ [0,∞).Exer
ise 1. Let T be a 
ompa
t Hausdor� spa
e and 
onsider the C∗-algebra C(T,C). Show that the self-adjoint elements are pre
isely the realvalued fun
tions and the positive elements are the fun
tions with non-negativevalues.



FA NOTES � 28/11/2008 3Proposition 4.2. Let A be a unital C∗-algebra and a, b ∈ A positive. Then,
a+ b is positive.Proof. Suppose λ ∈ σA(a+ b). Sin
e a and b are self-adjoint so is a+ b. Inparti
ular, σA(a + b) ⊂ R and λ is real. Set α := ‖a‖ and β := ‖b‖. Then,
(α+β)−λ ∈ σA((α+β)e−(a+b)) and thus |(α+β)−λ| ≤ rA((α+β)e−(a+b))by Theorem 1.14. But the element (α + β)e − (a + b) is normal (and evenself-adjoint), so Proposition 3.3 applies and we have rA((α+β)e− (a+ b)) =
‖(α+ β)e− (a+ b)‖ ≤ ‖αe− a‖+ ‖βe− b‖. Again using Proposition 3.3 we�nd ‖αe − a‖ = rA(αe − a) and ‖βe − b‖ = rA(βe − b). But σA(a) ⊆ [0, α]by positivity and Proposition 1.7. Thus, σA(αe − a) ⊆ [0, α]. Hen
e, byTheorem 1.14, rA(αe−a) ≤ α. In the same way we �nd rA(βe− b) ≤ β. Wehave thus demonstrated the inequality |(α + β) − λ| ≤ α + β. This implies
λ ≥ 0, 
ompleting the proof.Proposition 4.3. Let A be a unital C∗-algebra and a ∈ A self-adjoint.Then, there exist positive elements a+, a− ∈ A su
h that a = a+ − a− and
a+a− = a−a+ = 0.Proof. Exer
ise. Hint: Consider the unital C∗-subalgebra generated by a.Proposition 4.4. Let A be a unital C∗-algebra and a ∈ A. Then, a ispositive i� there exists b ∈ A su
h that a = b∗b.Proof. Exer
ise.A similar role to that played by the 
hara
ters in the theory of 
ommu-tative C∗-algebras is now played by states.De�nition 4.5. Let A be a unital C∗-algebra. A linear fun
tional ω : A→ Cis 
alled a state on A i� ω(a) ≥ 0 for all positive elements a ∈ A. A state is
alled normalized i� ‖ω‖ = 1.Proposition 4.6. Let A be a unital C∗-algebra and ω a state on A. Then
ω(a∗) = ω(a) for all a in A. In parti
ular, ω(a) ∈ R if a is self-adjoint.Proof. Exer
ise.Proposition 4.7. Let A be a unital C∗-algebra and ω a state on A. Considerthe map [·, ·]ω : A × A → C given by [a, b]ω = ω(b∗a). It has the followingproperties:1. [·, ·]ω is a sesquilinear form on A.2. [a, b]ω = [b, a]ω for all a, b ∈ A.3. [a, a]ω ≥ 0 for all a ∈ A.



4 FA NOTES � 28/11/2008Proof. Exer
ise.This shows that we almost have a s
alar produ
t, only the de�niteness
ondition is missing. Nevertheless we have the Cau
hy-S
hwarz inequality.Proposition 4.8. Let A be a unital C∗-algebra and ω a state on A. Thefollowing is true:1. |[a, b]ω |
2 ≤ [a, a]ω[b, b]ω for all a, b ∈ A.2. Let a ∈ A. Then, [a, a]ω = 0 i� [a, b]ω = 0 for all b ∈ A.3. [ab, ab]ω ≤ ‖a‖2[b, b]ω for all a, b ∈ A.Proof. Exer
ise.Proposition 4.9. Let A be a unital C∗-algebra and ω a state on A. De�ne

Iω := {a ∈ A : [a, a]ω = 0} ⊆ A. Then, Iω is a left ideal of the algebra A.In parti
ular, the quotient ve
tor spa
e A/Iω is a pre-Hilbert spa
e (s
alarprodu
t spa
e) with the indu
ed sesqulinear form.Proof. Exer
ise.De�nition 4.10. Let A be a unital C∗-algebra and ω a state on A. We 
allthe 
ompletion of the pre-Hilbert spa
e A/Iω the Hilbert spa
e asso
iatedwith the state ω and denote it by Hω. We denote its s
alar produ
t by
〈·, ·〉ω : Hω ×Hω → C.


