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Lemma 3.7. Let T be a Hausdorff topological space and Cy, Co disjoint
compact subsets of T'. Then, there are disjoint open subsets Uy, Uy of T such
that C1 C Uy and Co C Usy. In particular, if T is compact, then it is normal.

Proof. We first show a weaker statement: Let C' be a compact subset of T
and p ¢ C. Then there exist disjoint open sets U and V such that p € U and
C C V. Since T is Hausdorff, for each point ¢ € C' there exist disjoint open
sets Uy and V such that p € U, and ¢ € V. The family of sets {V;}q4ecc
defines an open covering of C'. Since C is compact there is a finite subset
S C C such that the family {V; }es already covers C. Define U := (1 5 U,
and V := qus Vy- These are open sets with the desired properties.

We proceed to the prove the first statement of the lemma. By the pre-
vious demonstration, for each point p € C; there are disjoint open sets U,
and V}, such that p € U, and Cy C V),. The family of sets {U,}pec, defines
an open covering of C. Since C] is compact there is a finite subset S C C}

such that the family {Up},es already covers C1. Define Uy := (J,cg Up and
Up = ﬂpES ‘/p

For the second statement of the lemma observe that if 7" is compact, then
every closed subset is compact. O

Lemma 3.8 (Urysohn’s Lemma). Let T be a normal topological space and
C1, Co disjoint closed subsets of T'. Then there exists a continuous function
f:T —[0,1] such that f(C1) =0 and f(Cs) = 1.

Together with the above lemmas the Gelfand-Naimark theorem gives rise
to a one-to-one correspondence between compact Hausdorff spaces and unital
commutative C*-algebras.

Theorem 3.9. The category of compact Hausdorff spaces is naturally equiv-
alent to the category of unital commutative C*-algebras.

Proof. Exercise. O

Before we proceed we need a few more results about C*-algebras.

Lemma 3.10. Let T1 be a compact Hausdorff space, To be a Hausdorff space
and f:Th — Ty a continuous bijective map. Then, f is a homeomorphism.

Proposition 3.11. Let A be a unital C*-algebra and a € A normal. Define
B to be the unital C*-subalgebra of A generated by a. Then, B is commutative
and the Gelfand transform a of a defines a homeomorphism onto its image,
I'p — op(a) which we denote by a.

Proof. B consists of possibly infinite linear combinations of elements of the
form (a*)™a™ where n,m € Ny (and a®° = (a*)? = e). In particular, B
is commutative. Consider the Gelfand transform a¢ : 'y — C of a in B.
Suppose a(¢) = a(y) for ¢,1p € I'g. Then, ¢(a) = (a), but also

¢(a*) = a*(¢) = a(9) = a(¥)) = a*(¢)) = ¥(a"),
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using Theorem 3.6. Thus, ¢ is equal to 1 on monomials (a*)™a" by mul-
tiplicativity and hence on all of B by linearity and continuity. This shows
that a is injective. By Proposition 2.15 the image of @ is op(a). Thus, a is
a continuous bijective map a : 'y — op(a). With Lemma 3.10 it is even a
homeomorphism. O

Proposition 3.12. Let A be a unital C*-algebra and a € A. Let B be a
untial C*-subalgebra containing e and a. Then, op(a) = o4(a).

Proof. 1t is clear that o4(a) C op(a). It remains to show that if b:= e —a
for any A € C has an inverse in A then this inverse is also contained in B.

Assume first that a (and hence b) is normal. We show that b~! is even
contained in the unital C*-subalgebra C of B that is generated by b. Suppose
that b~! is not contained in C and hence 0 € o¢(b). Choose m > [b~1|
and define a continuous function f : oc(b) — C such that f(0) = m and
|f(z)z| <1forall x € oc(b). Using Theorem 3.6 and Proposition 3.11 there
is a unique element ¢ € C such that ¢ = f o b. Observe also that b=idob,
where id : 0¢(b) — C is the map z — = and hence éb = (f - id) o b. Using
Theorem 3.6 we find

m < | fll = lell = llebb™ || < llebl[ o= = If -id]lllo~" ]| < 67"

This contradicts m > |[b7Y|. So 0 ¢ o¢(b) and b=! € C as was to be
demonstrated. This proves the proposition for a normal.

Consider now the general case. If b is not invertible in B then by
Lemma 1.8 at least one of the two elements b*b or bb* is not invertible in
B. Suppose b*b is not invertible in B (the other case proceeds analogously).
b*b is self-adjoint and in particular normal so the version of the proposition
already proven applies and o4(b*b) = op(b*b). In particular, b*b is not in-
vertible in A and hence b cannot be invertible in A. This completes the
proof. O

4 The GNS construction

We now move towards a characterization of noncommutative C*-algebras.
We are going to show that any unital C*-algebra is isomorphic to C*-subalgebra
of the bounded operators on some Hilbert space.

Definition 4.1. Let A be a unital C*-algebra. A self-adjoint element a € A
is called positive iff 04(a) C [0,00).

Exercise 1. Let T be a compact Hausdorff space and consider the C*-
algebra C(T,C). Show that the self-adjoint elements are precisely the real
valued functions and the positive elements are the functions with non-negative
values.
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Proposition 4.2. Let A be a unital C*-algebra and a,b € A positive. Then,
a + b is positive.

Proof. Suppose A € o4(a +b). Since a and b are self-adjoint so is a + b. In
particular, c4(a +b) C R and A is real. Set « := ||a|| and 5 := ||b]|. Then,
(a+8)=X\ € oa((a+B)e—(a+b)) and thus [(a+3)—A| < ra((a+5)e—(a+D))
by Theorem 1.14. But the element (« + 3)e — (a + b) is normal (and even
self-adjoint), so Proposition 3.3 applies and we have r4((a+3)e—(a+b)) =
l(a+ B)e — (a+b)| < |Jae —al|| + ||fe — b]|. Again using Proposition 3.3 we
find ||ae — al| = ra(ae — a) and ||Be — b|| = ra(Be — b). But c4(a) C [0, q]
by positivity and Proposition 1.7. Thus, o4(ae — a) C [0,a]. Hence, by
Theorem 1.14, r4(ae — a) < . In the same way we find r4(Be —b) < 5. We
have thus demonstrated the inequality |(a+ 3) — A| < a+ 8. This implies
A > 0, completing the proof. [l

Proposition 4.3. Let A be a unital C*-algebra and a € A self-adjoint.
Then, there ezist positive elements ay,a— € A such that a = a4 —a_ and
ata_ =a_ar = 0.

Proof. Exercise. Hint: Consider the unital C*-subalgebra generated by a.
O

Proposition 4.4. Let A be a unital C*-algebra and a € A. Then, a is
positive iff there exists b € A such that a = b*b.

Proof. Exercise. 0

A similar role to that played by the characters in the theory of commu-
tative C*-algebras is now played by states.

Definition 4.5. Let A be a unital C*-algebra. A linear functional w: A — C
is called a state on A iff w(a) > 0 for all positive elements a € A. A state is
called normalized iff ||w| = 1.

Proposition 4.6. Let A be a unital C*-algebra and w a state on A. Then
w(a*) =w(a) for all a in A. In particular, w(a) € R if a is self-adjoint.

Proof. Exercise. O

Proposition 4.7. Let A be a unital C*-algebra and w a state on A. Consider
the map [-,-], : A x A — C given by [a,b], = w(b*a). It has the following
properties:

1. [,-]w is a sesquilinear form on A.
2. [a,bl, = [b,aly for all a,b € A.
3. la,aly, >0 for all a € A.
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Proof. Exercise. O

This shows that we almost have a scalar product, only the definiteness
condition is missing. Nevertheless we have the Cauchy-Schwarz inequality.

Proposition 4.8. Let A be a unital C*-algebra and w a state on A. The
following is true:

1. |[a,blw)? < [a, alu[b, bl for all a,b € A.
2. Let a € A. Then, [a,al, =0 iff [a,bl, =0 for all b € A.
3. lab,abl,, < ||al?[b,b]. for all a,b € A.
Proof. Exercise. O

Proposition 4.9. Let A be o unital C*-algebra and w a state on A. Define
I, :={a € A:la,a], =0} C A. Then, 1, is a left ideal of the algebra A.
In particular, the quotient vector space A/l is a pre-Hilbert space (scalar
product space) with the induced sesqulinear form.

Proof. Exercise. O

Definition 4.10. Let A be a unital C*-algebra and w a state on A. We call
the completion of the pre-Hilbert space A/I, the Hilbert space associated
with the state w and denote it by H,. We denote its scalar product by
(v)w:Hyx H, — C,



